GdとTi原子の 紫外の高分解能レーザー分光

量子エレクトロニクス 6406017 根本佳和

発表の流れ

₩ 研究背景

- Discussion
- 🗳 まとめと展望

特殊質量シフト(Specific mass shift:SMS) 多電子系のハミルトニアン

$$H = \frac{1}{2\mu} \sum_{i=1}^{N} p_{i}^{2} + \frac{1}{M} \sum_{i < j}^{N} p_{i} \cdot p_{j} - \sum_{i=1}^{N} \frac{Z}{r_{i}} + \sum_{i < j}^{N} \frac{1}{|r_{i} - r_{j}|}$$
(Ref.1)

Specific Mass Shift 多電子系は計算が困難

$$ns^2 - nsnp$$
 無視出来る

他の遷移については未知

様々な遷移についての実験

実験:

これまでの研究領域
可視・近赤外領域における
希土類元素の研究

電子配置が複雑

Shape transition領域

より多くのSMSの理論計算との比較が難しい

超微細構造定数 同位体シフト Configuration

高励起準位・・・様々な遷移が存在

SMSの系統的な 研究が可能

これまでの研究領域の拡張

遷移波長はほぼ紫外領域

例:AI原子

$$E_{\rm hfs} = E_{\rm hfs}^{\rm d} + E_{\rm hfs}^{\rm q} = \frac{1}{2}AC + \frac{B}{4}\frac{\frac{3}{2}C(C+1) - 2I(I+1)J(J+1)}{I(2I-1)J(2J-1)}$$

$$C = F(F+1) - I(I+1) - J(J+1)$$

<u>A</u>:磁気双極子相互作用定数

B:電気四重極相互作用定数

$$A = \mu_I \frac{H_e}{IJ}$$

 H_e :磁場

 μ_I : 磁気双極子モーメント

$$B = eQ_s \left\langle \frac{\partial^2 V}{\partial Z^2} \right\rangle$$

 $\frac{\partial^2 V}{\partial Z^2}$:電場勾配

 Q_s :電気四重極モーメント

同位体シフト(IS)

$$\begin{split} v v' \\ v v' \\ \delta v' = v' - v \\ \delta \nu_{\rm NMS}^{AA'} = \left(\delta \nu_{\rm MS}^{AA'} + \delta \nu_{\rm FS}^{AA'} \right) \\ \delta \nu_{\rm MS}^{AA'} = \delta \nu_{\rm NMS}^{AA'} + \delta \nu_{\rm SMS}^{AA'} \\ \delta \nu_{\rm MS}^{AA'} = \frac{\delta \nu_{\rm NMS}^{AA'}}{AA'} = N \frac{A - A'}{AA'} : \text{Normal Mass Shift} \\ \hline a \gamma E E F \delta \sigma b \# g f g \Box \sigma \infty \ell \\ \delta \nu_{\rm SMS}^{AA'} = S \frac{A - A'}{AA'} : \text{Specific Mass Shift} \\ a \gamma E f \Box \sigma h a \Sigma f a A A' \\ a \gamma E f \Box \sigma h a \Sigma f a A A' \\ \hline a \gamma E f \Box \sigma h a \Sigma f a A A' \\ \hline a \gamma E f \Box \sigma h a \Sigma f a A A' \\ \hline a \gamma E f \Box \sigma h a \Sigma f a A A' \\ \hline a \gamma E f \delta \sigma h A A A' \\ \hline a \gamma E f \delta \sigma h A A' \\ \hline a$$

Crucible: Mo

Filament: Ta

Shield: Mo

Gd原子の測定遷移

Ti原子の測定遷移

Gd原子の超微細構造スペクトル(394.324nm)

Ti原子の超微細構造スペクトル(394.867nm)

Relative Frequency (GHz)

Isotope	157Gd		155Gd	
Energy Level (cm ⁻¹)	A (MHz)	B (MHz)	A (MHz)	B (MHz)
25254	101.0(3)	-3.6(4)	83.0(3)	-6.4(3)
25572	-68.2(5)	-842.7(17)	-62.2(4)	-770.0(38)

Wavelength(nm)	Transition	Isotope Shift(MHz)					
		manshion	160-158	158-156	156-154	154-152	
	394.324	s ² -sp	-1209.5(13)	-1151.8(13)	-1569.7(13)	-3572.4(27)	
	394.557	s ² -sp	-1398.6(15)	-1320.1(19)	-1799.4(25)	-4132.4(45)	
	395.868	s^2 - sp	-1375.7(14)	-1310.4(13)	-1765.5(21)		
	394.263	s²-dp	-2247.3(12)	-2175.1(17)	-2953.5(22)	-6807.4(60)	
	394.554	s^2 - dp	-2391.0(13)	-2287.0(18)	-3086.8(27)		
	394.180	s-f	-1987.8(11)	-1913.7(15)	-2667.1(19)		
	395.337	s-f	-1967.2(12)	-1882.4(13)	-2612.2(23)		

Isotope		⁴⁷ Ti		⁴⁹ Ti	
Energy level (cm ⁻¹)	Wavelength (nm)	A (MHz)	B (MHz)	A (MHz)	B (MHz)
25107	398.176	-84.91(5)	6.92(34)	-85.67(4)	3.41(44)
25227	396.285	-46.17(19)	-22.0(25)	-46.35(9)	-11.7(17)
25318	394.867	-135.27(30)	1.59(90)	-135.47(19)	7.89(71)
25439	395.634	-76.96(7)	10.71(47)	-77.23(9)	14.3(12)
25644	395.821	-17.94(9)	33.5(13)	-13.66(5)	13.14(99)

Wavelength(nm)	Transition —	Isotope Shift(MHz)			
		46-48	48-50		
394.867	s-p	1745.0(9)	1631.4(11)		
395.634	s-p	1487.4(7)	1403.0(8)		
395.821	s-p	1780.5(8)	1667.2(9)		
396.285	s-p	1303.3(6)	1216.8(9)		
396.427	s-p	1261.0(7)	1195.7(9)		
398.176	s-p	1241.7(6)	1172.2(7)		
398.976	s-p	1334.3(5)	1215.6(6)		

Discussion 1

Gd原子のSMS

他のエネルギー遷移のISのデータを用いて SMSを求める

Modified isotope shift

$$\delta\nu_i^{\text{mod}} = (\delta\nu_i - \delta\nu_i^{\text{NMS}}) \frac{AA'}{A - A'}$$

2つの遷移*i,j*を考える

$$\delta \nu_i^{\text{mod}} = \frac{E_i}{E_j} \delta \nu_j^{\text{mod}} + \left(M_i^{\text{SMS}} - \frac{E_i}{E_j} M_j^{\text{SMS}} \right) \cdot \frac{A - A'}{AA'}$$

 E_i / E_j : Electronic Factorの比

 ns^2 -nsnp遷移 $\delta_{SMS}^{AA'} = (0.0 \pm 0.5)\delta\nu_{NMS}^{AA'}$

各元素におけるSMSの比較

Discussion 2

Gd原子のFS

$$\delta\nu_{\rm FS}^{AA'} = \frac{\pi a_0^3}{Z} \Delta |\Psi_S(0)|^2 f(Z) \delta \langle r^2 \rangle^{AA'}$$

- 超微細構造定数A、Bの決定
- 同位体シフトを測定
- 希土類元素についてのSMSを計算
- SMSの系統性について検討
- 得られた同位体シフトからFSの値を計算

未解析である遷移についての解析

26Fe原子の紫外領域における実験

Stable Isotope	⁵⁸ Fe	⁵⁷ Fe	⁵⁶ Fe	⁵⁴ Fe	
Isotopic Abundance	0.28	2.2	91.72	5.8	
Nuclear Spin	0	1/2	0	0	

Fin.